If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=7h^2+16h-3596
We move all terms to the left:
0-(7h^2+16h-3596)=0
We add all the numbers together, and all the variables
-(7h^2+16h-3596)=0
We get rid of parentheses
-7h^2-16h+3596=0
a = -7; b = -16; c = +3596;
Δ = b2-4ac
Δ = -162-4·(-7)·3596
Δ = 100944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{100944}=\sqrt{144*701}=\sqrt{144}*\sqrt{701}=12\sqrt{701}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-12\sqrt{701}}{2*-7}=\frac{16-12\sqrt{701}}{-14} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+12\sqrt{701}}{2*-7}=\frac{16+12\sqrt{701}}{-14} $
| 3x-x=12x+7 | | 45m+2=71 | | 4r•2.5=21.50 | | -6=n/2+1 | | 4r-21.50=2.5 | | (n-4)(n-3)=0 | | (x+3)(4)=5*2 | | x2+35=0 | | 11x−2=130 | | 4r-21.50=2.50 | | 14+4k=2-4k | | x^-2/3=26 | | (x^2-x+3)(x^2-x-6)+20=0 | | -103=6x+-17 | | Y=x2-20×+101 | | 36/w=0,9/100 | | 3x+4x=30x+40x | | (2.25t+5)=(13.5t+14) | | 8(x)=24+40 | | 18-9=x | | -w+54=274 | | 217=35-w | | 17x+6=20x-6 | | 5b+2b-2=19 | | 4(w+6)=-6 | | Y+3=-2(x-1 | | (6x-1)(2x+1)=0 | | 13+x=72 | | 8x+8=20x | | 8x+8=36x | | Y-4=-3(x+2 | | 8x-16x+44=13 |